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ABSTRACT

Since a large amount of clinical data are being stored
electronically, discovery of knowledge from such clini-
cal databases is one of the important growing research
area in medical informatics. For this purpose, we de-
velop KDD-R(a system for Knowledge Discovery in
Databases using Rough sets), an experimental system
for knowledge discovery and machine learning research
using variable precision rough sets (VPRS) model,
which is an extension of original rough set model. This
system works in the following steps. First, it prepro-
cesses databases and translates continous data into dis-
cretized ones. Second, KDD-R checks dependencies be-
tween attributes and reduces spurious data. Third, the
system computes rules from reduced databases. Finally,
fourth, it evaluates decision making. For evaluation,
this system is applied to a clinical database of menin-
goencephalitis, whose computational results show that
several new findings are obtained.

1. INTRODUCTION

Knowledge discovery in clinical databases is an im-
portant research area in medical informatics. Most of
medical data, such as patient records, laboratory data,
are now being stored electronically, and the amount
of clinical databases will be too huge, so that even
medical experts cannot deal with such large databases.
Thus, a computer-based approach is promising to solve
this difficult situation.

In this paper, we introduce a system KDD-R(a
system for Knowledge Discovery in Databases us-
ing Rough sets), based on Variable Precision Rough
Set(VPRS) model[4].

This system works as follows. First, it prepro-
cesses databases and translates continuous data into
discretized ones. Second, KDD-R checks dependencies
between attributes and reduces spurious data. Third,
the system computes rules from reduced databases. Fi-
nally, fourth, it evaluates decision making.

For evaluation, we apply KDD-R to a clinical
database of meningoencephalitis, whose computational
results show that several new findings are obtained
from clinical databases.
The paper is organized as follows: Section 2 gives

an overview of KDD-R system. Then, Section 3 to 5
shows the main computational units of KDD-R. Next,
Section 6 presents experimental results. Finally, Sec-
tion 7 concludes this paper.
Due to the limitation of space, we do not fully discuss

the concepts of rough sets and variable precision model,
although the main concepts needed are shown in each
section. For further information, readers could refer to
[1,2,3,4,7,8].

2. KDD-R and PROBLEM
REPRESENTATION

KDD-R is an open tool-box, implemented in C under
UNIX. Currently, it is menu driven with X-Windows
interface implementation in the works. The system
contains, among others, the following primary func-
tional units:

(1) Data preprocessing unit, responsible for mapping
original data set into discretized form, either by using
user-supplied discretization formula or by applying an
automatic discretization algorithm.

(2) A unit for analysis of dependencies among at-
tributes and elimination of superfluous attributes. The
unit also enables one to compute generalized attribute
reducts and cores1, as defined in the VPRS model.

(3) A unit for computation of rules from data. This
unit computes all, or some, approximate rules with
decision probabilities, where the probabilities are re-
stricted by lower and upper limit parameters[2] speci-
fying the area of user interest. The rules can be com-
puted for a selected reduct using the method of decision
matrix[6]. The unit can also be used to compute max-
imal approximate rules, that is the maximal elements

'Reducts denotes minimal number of independent attributes,
and cores is derived as intersection of all the reducts.
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in the partial ordering of rules with respect to relation
of inclusion of data sets supporting each rule. Such
rules are the strongest in terms of available data sup-
port and independent from each other. The user can
also select among all rules or the rules forming minimal
covering of the target concept.

(4) Decision unit which can be used in situations
requiring system's advice based on previously accumu-
lated information. The decision unit is combining all
the available evidence, expressed in the form of rules,
to suggest the most likely decision for a given situation.
The object of the analysis in KDD-R is a flat re-

lational table with rows containing information about
objects or situations from a certain universe of dis-
course, expressed in terms of attribute values. The
permissible attribute values are integers and reals.

In the analysis of the relationship, each value v of
the decision attribute is treated as a set lvl of table
rows matching this value. Our primary problem is
to produce, in automatic or semi-automatic fashion,
plausible and strongly supported by available evidence
hypotheses about the true nature of the relationship
between the occurrence of combinations of some prop-
erties of condition attributes values in real objects and
the occurrence of the value v of the decision attribute.
In doing that, we construct an associated secondary
table Tv for each decision attribute value of interest,
with unchanged condition attributes and a new binary
decision attribute corresponding to the characteristic
function of the set Ivi. Following this step, the orig-
inal problem with m decision attribute values is de-
composed by KDD-R into m subproblems, each with
a binary decision attribute.

3. DATA PROCESSING

Prior to running KDD-R, the user is required to pro-
vide several control parameters whose definitions will
be introduced gradually throughout the paper. The
preprocessing unit of the system converts each con-
structed table T, with binary decision attributes2 into
a corresponding table with all condition attributes dis-
cretized. One of the parameters supplied by the user
is the number n of discrete condition attributes in the
preprocessed table.
Data preprocessing involves defining a secondary set

of features which are functions of original attribute val-
ues. The original attribute values are often to detailed
to capture repetitive regularities, or patterns occurring
in the data. The secondary feature definitions can be
either provided by the user based on domain knowl-
edge, or can be produced automatically using, for ex-
ample, some statistical techniques[2].

2Conditional attributes correspond to the premise of a propo-
sition, and decision attributes are equivalent to the conclusion
of a proposition.

KDD-R enables the user to define his/her own dis-
crete secondary features in terms of properly selected
value ranges. The other possibility is to get the system
to generate the definition of secondary features. This
option applies only to real-valued attributes. In this
process, the real-valued attributes are replaced by one,
or more three-valued discrete attributes corresponding
to value ranges. For a given range (a, b >, the new
value V(a,b> assigned to value v is given by

J 0 if v < a

V(a,b> = 1 if a < v < b
2 if b < v.

When constructing the three-valued representation
for condition attributes of each of m data tables with
binary decision attributes, the system is performing
internal search looking for ranges which maximize the
given range quality criterion Q(rA).
To describe the criterion Q(rA), let ID = 1i denote

the set of data rows with the secondary decision at-
tribute value equal to 1, and let IrAt be the set of rows
with values of the attribute A falling into the range
rA = (a,b >. The criterion of range quality Q(rA)
is based on the estimation of the following conditional
probabilities:

(1) P(rAID = 1), the probability that an object has
the value of attribute A falling in the range rA,
provided that the value of the decision attribute
is 1;

(2) P(D = 1IrA), the probability that an object has
the value of the decision attribute given by D = 1
if the value of A attribute belongs to the range rA;

(3) P(rAID = 0), the probability that an object has
the value of attribute A falling in the range rA
if the value of the secondary decision attribute is
D = 0;

(4) P(D = OIrA), the probability that the value of
the decision attribute is D = 0 if an object has
the value of the condition attribute belonging to
TA.

Intuitively, if the random event (v E rA) and (D = 1)
are well connected in statistical sense then both mea-
sures (1) and (2) should yield high values and the
measures (3) and (4) should yield low values. Conse-
quently, based on this intuition the range quality mea-
sure used by KDD-R is

Q(rA) = P(rAD = 1) + P(D =1IrA)
-P(rAID =0) - P(D = OIrA).

Clearly, -2 < Q(rA) < 2. Q(rA) can be seen as a
measure of bias of the set IrAI towards the set ID = 1
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with two extremes: Q(rA) = 2 if IrAl = ID = 11 and
Q(rA) = -2 if IrAI = ID = 01.

Following the range search process, m secondary
tables, each with n best three-valued condition at-
tributes, are created and passed to the further stages
of analysis.

4. VPRS-BASED DATA ANALYSIS

Following the quantization stage, each one of the m
tables can be analyzed to investigate the relationship
between the occurrence of the value D = 1 of the sec-
ondary decision attribute and the discrete values of n
condition attributes. The theoretical model behind the
analytical routines used in this process is the Variable
Precision Rough Set (VPRS) model[4]. In comparison
to the original Pawlak's definition [1], the VPRS tech-
nique provides a degree of flexibility in specifying the
lower bound, boundary region and the negative region
of a set Y by allowing a controlled degree of overlap
of lower bound atoms and negative region atoms with
the set Y complement or the set Y, respectively.
More precisely, for given lower and upper limit pa-

rameters e and u respectively, such that 0 < e < u < 1,
the t-lower approximation (or t-positive region) of the
subset Y C U in the approximation space A = (U, R)
is given by

RI(Y) = U{E E R* c(E, Y) < i},
where R* is a collection of the classes of abstraction of
the equivalence relation R C U x U and c(E, Y) is a
classification factor, or an apparent error rate defined
as

C(E7Y) = 1 _ card(E n Y)
card(E)

The classification factor is a measure of the relative de-
gree of intersection of an atom E with the complement
of set Y. The equivalence relation R C U x U in KDD-
R is treating any two rows of a secondary table T,
with identical values of secondary condition attributes
as equivalent.
The (i, u)-boundary region of the set Y is given by

BNRe,u(Y) = U{E E R* < c(E, Y) < U}
and the u-negative region is defined as

NEGU(Y) = U{E C R* c(E, Y) > U}.

Before using KDD-R, when specifying system parame-
ters, user is asked to provide the lower and upper limit
parameters, i and u. He or she also needs to indicate
whether the data analysis will be focused on the i-lower
bound or on the u-upper bound of each value of the
decision attribute, where the u-upper bound is simply
a union of t-lower bound and (i,u)-boundary region.

For the sake of simplicity, we will assume here that the
analysis will be focused on the i-lower bound. This
means that KDD-R will compute the t-lower bounds
R(ID -= 11) of sets ID = 11 in all m tables with binary
decision attributes. Following this computation, the
KDD-R user has the following choice of options to ana-
lyze the relationship between the discretized condition
attributes and the approximation regions of ID = 11.

a. Computing the measure of dependency between
discrete condition attributes and the secondary
decision attribute, DEP(C, D), as given by the
expression

card(RI(ID = 11)) + card(NEGu(ID = 11))
card(U)

where C is a set of condition attributes used to
obtain the classification of objects into identity
classes corresponding to the relation R.

b. Computing the degree of accuracy of ID = 11 ap-
proximation using two measures:

M1(D= 1) = card(R,(ID = 11) n ID = lj)
card(ID = 11)

and
M2(D 1) -card(Re(ID = ii))

M2(D = 1) = card(RU(ID = 1i))

c. Computing one relative reduct[1] or all relative
reducts of condition attributes with respect to
preservation of both i-lower bound and u-negative
region of ID = i1.

d. Computing one relative reduct or all relative
reducts of condition attributes with respect to
preservation of i-lower bound (or u-upper bound,
if selected by the user) of ID = 11.

e. Computing core attributes[1] with respect to the
given dependency function.

The computation of a single relative reduct either
requires the user to provide a priority ordering on the
condition attributes or range quality measure, as de-
fined in Section 3, is used by the system to produce the
priority ordering of secondary attributes. The com-
putation involves testing each secondary attribute, in
the reverse order of priority, by removing it from the
table and checking whether the dependency with the
decision attribute is changed. If the dependency was
not affected by the removed attribute, the attribute
is eliminated permanently, otherwise it is returned to
the table. The algorithm for computation of all rela-
tive reducts accomplished with the help of the decision
matrix method, as implemented in KDD-R, is fully de-
scribed in [8].
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5. COMPUTATION OF RULES

Computation of rules, besides computation of reducts,
is one of the most important activities carried out by
KDD-R. Similar to computation of reducts, the deci-
sion matrix technique[6] is used here to find all minimal
length rules for £-lower bound (or u-upper bound) of
the set ID = 11 of each of the discretized secondary
tables. The technique involves finding prime impli-
cants, which correspond to maximally general rules,
described as a Boolean function called decision func-
tion[5,6]. The decision matrix method, as applied to
computation of rules, is briefly summarized below.

Before we define the notion of a decision matrix, we
will assume some notational conventions. We will as-
sume that all classes Ei of R* such that Ei C Re(D =
11) and all classes Ej such that Ej C NEGU(ID =
11) are separately numbered with subscripts i (i =
1,2, ...y) and j (j = 1,2,...p) respectively.
A decision matrix M = (Mij)Xp with respect to

e-lower approximation of ID = 11 (or u-upper approx-
imation of ID = 11) is defined by

Mij {(A, A(Ei)): A(Ei) 7& A(Ej)}
where A is a secondary discretized condition attribute
and A(E-) is the value of this attribute common to all
objects belonging to the atom Ei.
The matrix entry Mij contains all attribute-value

pairs (attribute, value) whose values are not identical
on atoms Ei and Ej. Mij represents the complete in-
formation distinguishing atomic classes Ei from Ej.
The set of decision rules computed for a given class

Ei (i = 1, 2,...-y) is obtained by treating each ele-
ment of Mij as a propositional variable and forming
a Boolean function (decision function)

Bi=AVMij,
i

where A and V are respectively generalized conjunc-
tion and disjunction operators.
The prime implicants of the decision function corre-

spond to maximally general rules for the £-lower bound
Rj(LD = 11). By finding the prime implicants of all
decision functions Bi (i = 1, 2, ..., -y), all maximally
general rules can be computed for the £-lower bound
of ID = 11. Similarly, all rules can be found for the
u-upper bound or the u-negative region of ID = 11.

In addition to computing all rules for the ?-lower
bounds, KDD-R has also the option of finding a sub-
set of "best" rules. The "best" rules, or the maximal
rules are the maximal elements in partial ordering of
the rules with respect to the relationship of inclusion
among their support sets. The support set of a rule,
denoted as supp(r), is defined here as a collection of
rows of the original table satisfying the condition of
the rule's condition part.

The identifiers of rows belonging to rule support set
are shown for each rule computed by KDD-R. The rules
with larger support sets are considered to be "stronger"
and better asserted by the available evidence. Also, no
maximal rule is covered by any other rule, so in this
sense the maximal rules are also independent.

Another option available to KDD-R user is the pos-
sibility of finding the minimum, or close to minimum,
subset of strongest rules covering the £-lower approx-
imation of ID = 11. Since the basic rough sets model
implemented in KDD-R is VPRS, the rules can be non-
deterministic which means that more than one out-
come is possible based on some rules. Because each
range of values of an attribute A, rA can be perceived
as a nondeterministic, in general, rule rA - + (D = 1),
it follows that all measures used for range evaluation
are also applicable to rules. Consequently, when pre-
senting each rule to the user, the system also provides
estimates of conditional probabilities, with respect to
all possible outcomes, and rule quality measure, ex-
actly in the same way as they are defined in Section 3
for evaluation of ranges.

6. EXPERIMENTAL RESULTS

We apply KDD-R to a clinical database of menin-
goencephalitis collected from Matsudo Municipal Hos-
pital in Japan. This database, described by 26 condi-
tional attributes and one decision attribute(diagnosis
of neurologists), has 96 training samples, composed
of 66 viral cases and 30 bacterial ones. Using this
database, we analyze what factors are important for
differential diagnosis between viral and bacterial infec-
tion.

For viral meningitis, 15 positive and 18 negative re-
gion rules are derived. The best two or three rules for
each region, which cover many training samples, are
shown in the following:

Positive Region rules for (D: Viral Meningitis):

(1) Premise:
(37.0 < BT < 39.0)&(200 < CSFCELL < 1000)
Rule Coverage: C(D) = 19, C(-D) = 0,
Range Quality Measure: Q(r) = 1.288.

(2) Premise:
(SEX = F)&(200 < CSFCELL < 1000)
Rule Coverage: C(D) = 21, C(-D) = 0,
Range Quality Measure: Q(r) = 1.318.

Negative Region rules for (D: Viral Meningitis):

(1) Premise:
(39.0 < BT < 40.2)&(1000 < CSFCELL <
63350)
Rule Coverage: C(D) = 0, C(-D) = 8,
Range Quality Measure: Q(r) = -1.242.
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(2) Premise:
(49 < AGE < 59)&(1000 < CSFCELL < 63350)
Rule Coverage: C(D) = 0, C(-D) = 6,
Range Quality Measure: Q(r) = -1.182.

Positive Region rules for (D:Bacterial Meningitis):

(1) Premise:
(1.2 < CRP < 31.0)&(1000 < CSFCELL <
63350)
Rule Coverage: C(D) = 10, C(-D) = 0,
Range Quality Measure: Q(r) = 1.333.

(2) Premise:
(39.0 < BT < 40.2)&(1000 < CSFCELL <
63350)
Rule Coverage: C(D) = 8, C(-D) = 0,
Range Quality Measure: Q(r) = 1.267.

Negative Region rules for (D:Bacterial Meningitis:

(1) Premise:
(SEX = F)&(200 < CSFCELL < 1000)
Rule Coverage: C(D) = 0, C(-D) = 21,
Range Quality Measure: Q(r) = -1.304.

(2) Premise:
(0.0 < CRP < 0.6)&(5 < CSFCELL < 200)
Rule Coverage: C(D) = 0, C(-D) = 20,
Range Quality Measure: Q(r) = -1.290.

In the above rules, BT and CSFCELL denote body
temperature and cell count in cerebulospinal fluid, re-
spectively.
Each of the above rules is given by specifying its

condition in the first row, followed by rule coverage
(denoted by C(.))3 and rule quality measure Q(r).
These obtained rules give us four interesting results.

First, CSFceii is the most important attribute-value
pair, which corresponds to medical knowledge. Second,
values of the markers for viral infection, such as BT,
CRP, and CSFce,i are much lower than ones for bac-
terial infection. Third, interestingly, women do not of-
ten suffer from bacterial infection, compared with men.
However, in medical context, such sex relationship has
not been discussed[9]. Thus, this sexual relation seems
to be dependent on our training samples. Examined
databases clearly, it is found that most of the above pa-
tients suffers from chronic diseases, such as DM, LC,
and sinusitis, which are the risk factors of bacterial
meningitis. Fourth, age is also an important factor not
to suspect viral meningitis, which also matches the fact
that most old people suffers from chronic diseases. In-
terestingly, the first negative region rule shares only
one case with the second negative one, which weakly
suggests that 39.0 < BT < 40.2 and 49 < AGE < 59
be independent.

3Rule coverage is equal to the number of training samples
which satisfies the premise of a given rule.

7. CONCLUSION

In this paper, we introduce a system KDD-R in order
to discover knowledge in clinical databases. This sys-
tem is a new software environment designed from the
bottom up with the sole objective of providing a collec-
tion of rough sets-based tools for comprehensive data
analysis and knowledge discovery using VPRS model.
We apply KDD-R to a clinical database on meningoen-
cephalitis. The results show that several new findings
are obtained from clinical databases.
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